- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Baral, Prabin (3)
-
Bhattarai, Nisha (2)
-
Chapagain, Prem P. (2)
-
Gerstman, Bernard S. (2)
-
Hossen, Md Lokman (2)
-
Chapagain, Prem (1)
-
Gerstman, Bernard (1)
-
Narasimhan, Giri (1)
-
Sharma, Tej (1)
-
Stebliankin, Vitalii (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We computationally investigated the role of the omicron RBD mutations on its structure and interactions with the surrounding domains in the spike trimer as well as with ACE2. Our results suggest that, compared to WT and delta, the mutations in the omicron RBD facilitate a more efficient RBD “down” to “up” conformation as well as ACE2 attachment. These effects, combined with antibody evasion, may have contributed to its dominance over delta.more » « less
-
Bhattarai, Nisha; Baral, Prabin; Gerstman, Bernard S.; Chapagain, Prem P. (, The journal of physical chemistry)null (Ed.)The novel coronavirus (SARS-CoV-2) pandemic that started in late 2019 is responsible for hundreds of millions of cases worldwide and millions of fatalities. Though vaccines are available, the virus is mutating to form new strains among which are the variants B.1.1.7 and B.1.351 that demonstrate increased transmissivity and infectivity. In this study, we performed molecular dynamics simulations to explore the role of the mutations in the interaction of the virus spike protein receptor binding domain (RBD) with the host receptor ACE2. We find that the hydrogen bond networks are rearranged in the variants and also that new hydrogen bonds are established between the RBD and ACE2 as a result of mutations. We investigated three variants: the wild-type (WT), B.1.1.7, and B.1.351. We find that the B.1.351 variant (also known as 501Y.V2) shows larger flexibility in the RBD loop segment involving residue K484, yet the RBD–ACE2 complex shows higher stability. Mutations that allow a more flexible interface that can result in a more stable complex may be a factor contributing to the increased infectivity of the mutated variants.more » « less
-
Baral, Prabin; Bhattarai, Nisha; Hossen, Md Lokman; Stebliankin, Vitalii; Gerstman, Bernard S.; Narasimhan, Giri; Chapagain, Prem P. (, Biochemical and Biophysical Research Communications)
An official website of the United States government
